Dispersive constraints on the two-pion contribution to hadronic vacuum polarisation

Peter Stoffer

Physics Department, UC San Diego

in collaboration with G. Colangelo and M. Hoferichter JHEP **1902**, 006 (2019) [arXiv:1810.00007 [hep-ph]]

11th September 2019

Third Plenary Workshop of the Muon g-2 Theory Initiative INT, University of Washington, Seattle

1

Outline

- 1 Unitarity and analyticity
- 2 Dispersion relation for the pion vector form factor
- 3 Fit results and contribution to the muon g-2
- 4 Summary

Overview

- 1 Unitarity and analyticity
- ② Dispersion relation for the pion vector form factor
- 3 Fit results and contribution to the muon g-2
- 4 Summary

Hadronic vacuum polarisation (HVP)

Photon HVP function:

$$\sim\sim\sim = i(q^2 g_{\mu\nu} - q_{\mu} q_{\nu})\Pi(q^2)$$

Unitarity of the *S*-matrix implies the optical theorem:

$$\operatorname{Im}\Pi(s) = \frac{s}{e(s)^2} \sigma(e^+e^- \to \text{hadrons})$$

4

Dispersion relation

Causality implies analyticity:

Cauchy integral formula:

$$\Pi(s) = \frac{1}{2\pi i} \oint_{\gamma} \frac{\Pi(s')}{s' - s} ds'$$

Deform integration path:

$$\Pi(s) - \Pi(0) = \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{\operatorname{Im}\Pi(s')}{(s' - s - i\epsilon)s'} ds'$$

5

HVP contribution to $(g-2)_{\mu}$

$$a_{\mu}^{\mathrm{HVP}} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\mathrm{thr}}}^{\infty} ds \, \frac{\hat{K}(s)}{s} \, \sigma(e^+e^- \to \mathrm{hadrons})$$

- basic principles: unitarity and analyticity
- direct relation to experiment: total hadronic cross section $\sigma(e^+e^- \to {\rm hadrons})$
- dedicated e^+e^- program (BaBar, Belle, BESIII, CMD3, KLOE, SND)

Two-pion contribution to HVP

- $\pi\pi$ contribution amounts to more than 70% of HVP contribution
- responsible for a similar fraction of HVP uncertainty

Unitarity and analyticity

Implications of unitarity (two-pion intermediate states):

- 1 $\pi\pi$ contribution to HVP—pion VFF
- 2 pion VFF— $\pi\pi$ scattering
- 3 $\pi\pi$ scattering— $\pi\pi$ scattering

$$\sim : \quad \sigma(e^+e^- \to \pi^+\pi^-) \propto |F_\pi^V(s)|^2$$

analyticity ⇒ usual DR for HVP contribution

Unitarity and analyticity

Implications of unitarity (two-pion intermediate states):

- 1 $\pi\pi$ contribution to HVP—pion VFF
- 2 pion VFF— $\pi\pi$ scattering
- 3 $\pi\pi$ scattering— $\pi\pi$ scattering

$$+ \dots : \quad F_{\pi}^{V}(s) = |F_{\pi}^{V}(s)|e^{i\delta_{1}^{1}(s) + \dots}$$

analyticity ⇒ DR for pion VFF, Omnès solution

Unitarity and analyticity

Implications of unitarity (two-pion intermediate states):

- 1 $\pi\pi$ contribution to HVP—pion VFF
- ② pion VFF— $\pi\pi$ scattering
- 3 $\pi\pi$ scattering— $\pi\pi$ scattering

analyticity, crossing, PW expansion ⇒ Roy equations

- Unitarity and analyticity
- 2 Dispersion relation for the pion vector form factor
- 3 Fit results and contribution to the muon g-2
- 4 Summary

9

Two-pion contribution to HVP

VFF itself fulfils a unitarity relation:

• use the constraints of analyticity and unitarity to better understand uncertainties in HVP $\pi\pi$ channel

→ de Trocóniz, Ynduráin, 2001, 2004; Leutwyler, Colangelo 2002, 2003;

Ananthanarayan et al. 2013, 2016

Dispersive representation of pion VFF

• Omnès function with elastic $\pi\pi$ -scattering P-wave phase shift $\delta_1^1(s)$ as input:

$$\Omega_1^1(s) = \exp\left\{\frac{s}{\pi} \int_{4M_\pi^2}^\infty ds' \frac{\delta_1^1(s')}{s'(s'-s)}\right\}$$

Dispersive representation of pion VFF

• isospin-breaking 3π intermediate state: negligible apart from ω resonance (ρ – ω interference effect)

$$G_{\omega}(s) = 1 + \frac{s}{\pi} \int_{9M_{\pi}^{2}}^{\infty} ds' \frac{\text{Im}g_{\omega}(s')}{s'(s'-s)} \left(\frac{1 - \frac{9M_{\pi}^{2}}{s'}}{1 - \frac{9M_{\pi}^{2}}{M_{\omega}^{2}}} \right)^{4},$$

$$g_{\omega}(s) = 1 + \epsilon_{\omega} \frac{s}{(M_{\omega} - \frac{i}{2}\Gamma_{\omega})^{2} - s}$$

11

Dispersive representation of pion VFF

- heavier intermediate states: 4π (mainly $\pi^0\omega$), $\bar KK$, . . .
- described in terms of a conformal polynomial with cut starting at $\pi^0\omega$ threshold

$$G_{\text{in}}^{N}(s) = 1 + \sum_{k=1}^{N} c_{k}(z^{k}(s) - z^{k}(0))$$

correct P-wave threshold behaviour imposed

Input and systematic uncertainties

- elastic $\pi\pi$ -scattering P-wave phase shift $\delta_1^1(s)$ from Roy-equation analysis, including uncertainties
 - → Ananthanarayan et al., 2001; Caprini et al., 2012
- high-energy continuation of phase shift above validity of Roy equations
- ω width
- systematics in conformal polynomial: order N, one mapping parameter

Free fit parameters

- value of the elastic $\pi\pi$ -scattering P-wave phase shift δ_1^1 at two points (0.8 GeV and 1.15 GeV): number of free parameters dictated by Roy equations
- ρ – ω mixing parameter ϵ_{ω}
- ullet ω mass
- energy rescaling for the experimental input, which allows for a calibration uncertainty
- N-1 coefficients in the conformal polynomial

VFF fit to the following data

- time-like cross section data from high-statistics e^+e^- experiments SND, CMD-2, BaBar, KLOE
- space-like VFF data from NA7
- - → Eidelman, Łukaszuk, 2004
- iterative fit routine including full experimental covariance matrices and avoiding D'Agostini bias
 - → D'Agostini, 1994; Ball et al. (NNPDF) 2010

Overview

- Unitarity and analyticity
- ② Dispersion relation for the pion vector form factor
- **3** Fit results and contribution to the muon g-2
- 4 Summary

	$\chi^2/{ m dof}$	M_{ω} [MeV]	$10^3 \times \xi_j$	$\delta_1^1(s_0)$ [°]	$\delta_1^1(s_1)$ [°]	$10^3 \times \epsilon_{\omega}$
SND	51.9/37 = 1.40	781.49(32)(2)	0.0(6)(0)	110.5(5)(8)	165.7(0.3)(2.4)	2.03(5)(2)
CMD-2	87.4/74 = 1.18	781.98(29)(1)	0.0(6)(0)	110.5(5)(8)	166.4(0.4)(2.4)	1.88(6)(2)
BaBar	299.1/262 = 1.14	781.86(14)(1)	0.0(2)(0)	110.4(3)(7)	165.7(0.2)(2.5)	2.04(3)(2)
KLOE"	222.5/185 = 1.20	781.81(16)(3)	$\begin{cases} 0.5(2)(0) \\ -0.3(2)(0) \\ -0.2(3)(0) \end{cases}$	110.3(2)(6)	165.6(0.1)(2.4)	1.98(4)(1)
Energy scan	152.5/119 = 1.28	781.75(22)(1)		110.4(3)(8)	166.0(0.2)(2.4)	1.97(4)(2)
All e^+e^-	731.6/582 = 1.26	781.68(9)(4)		110.4(1)(7)	165.8(0.1)(2.4)	2.02(2)(3)
All e^+e^- , NA7	776.2/627 = 1.24	781.68(9)(3)		110.4(1)(7)	165.7(0.1)(2.4)	2.02(2)(3)

- 1st error: fit uncertainty; 2nd error: systematics
- fit uncertainty inflated by $\sqrt{\chi^2/\mathrm{dof}}$

- good fits to all experiments possible (p-value around 3% to 14%) with a few caveats:
 - either M_{ω} or energy recalibration has to be fit (practically identical results)
 - two outliers in KLOE08 set (> 30 units in χ^2)
 - BESIII covariance matrix cannot be used
- well-known discrepancy between BaBar and KLOE
 - fits to single data sets
 - combinations and error inflation by $\sqrt{\chi^2/\mathrm{dof}}$
- inelastic effects dominate uncertainty for $(g-2)_{\mu}$

- good fits to all experiments possible (p-value around 3% to 14%) with a few caveats:
 - either M_{ω} or energy recalibration has to be fit (practically identical results)
 - two outliers in KLOE08 set (> 30 units in χ^2)
 - BESIII covariance matrix cannot be used
- well-known discrepancy between BaBar and KLOE
 - fits to single data sets
 - combinations and error inflation by $\sqrt{\chi^2/\mathrm{dof}}$
- inelastic effects dominate uncertainty for $(g-2)_{\mu}$

ω mass

fit result for ω mass:

combined fit:
$$M_{\omega} = 781.69(9)(3) \text{ MeV}$$

fits to single experiments: $M_{\omega} = 781.49...782.05 \, \text{MeV}$

compare to PDG value (dominated by 3π channel):

$$M_{\omega}^{\rm PDG} = 782.65(12)\,{\rm MeV}$$

discrepancy can only be partially explained by additional radiative channels (without affecting results for $a_{\mu}^{\rm HVP,\pi\pi}$) \rightarrow thanks to Bastian for this suggestion

(3)

Relative difference between data sets and fit result

Contribution to $(g-2)_{\mu}$

• low-energy $\pi\pi$ contribution:

$$\begin{array}{c} a_{\mu}^{\rm HVP,\pi\pi}|_{\leq 0.63\,{\rm GeV}} = 132.8(0.4)(1.0)\times 10^{-10}\\ \\ \Rightarrow {\rm compare~to} \qquad 131.1(1.0) \ \ \, \to {\rm KNT18}\\ \\ 132.9(8) \ \ \, \to {\rm Ananthanarayan~et~al.,~2018}\\ \\ 133.4(5)(4) \ \ \, \to {\rm DHMZ19} \end{array}$$

• $\pi\pi$ contribution up to 1 GeV:

$$a_{\mu}^{\rm HVP,\pi\pi}|_{\leq 1\,{\rm GeV}} = 495.0(1.5)(2.1)\times 10^{-10}$$

Result for $a_{\mu}^{\mathrm{HVP},\pi\pi}$ below 1 GeV

Error budget

uncertainties on $a_{\mu}^{\mathrm{HVP},\pi\pi}|_{\leq 1\,\mathrm{GeV}}$ in combined fit to all experiments:

Improved determination of $\delta_1^1(s)$

$$\delta_1^1(s_0) = 110.4(1)(7)^\circ = 110.4(7)^\circ$$

 $\delta_1^1(s_1) = 165.7(0.1)(2.4)^\circ = 165.7(2.4)^\circ$

(3)

Determination of the pion charge radius

$$F_{\pi}^{V}(s) = 1 + \frac{1}{6} \langle r_{\pi}^{2} \rangle s + \mathcal{O}(s^{2})$$

DR for F_{π}^{V} implies sum rule for charge radius:

$$\langle r_{\pi}^2 \rangle = \frac{6}{\pi} \int_{4M_{\pi}^2}^{\infty} ds \frac{\mathrm{Im} F_{\pi}^V(s)}{s^2} = 0.429(4) \, \mathrm{fm}^2$$

together with $\langle r_\pi^2 \rangle = 0.432(4) \rightarrow$ Ananthanarayan et al., 2017

triggered a revision of the PDG value:

PDG 2018: $\langle r_{\pi}^2 \rangle = 0.452(11) \, \text{fm}^2$

PDG 2019: $\langle r_{\pi}^2 \rangle = 0.434(5) \, \text{fm}^2$

(model-dependent $eN \to e\pi N$ now excluded)

Overview

- Unitarity and analyticity
- ② Dispersion relation for the pion vector form factor
- 3 Fit results and contribution to the muon g-2
- 4 Summary

Summary

- precise dispersive determination of pion VFF
- comprehensive analysis of uncertainties in $\pi\pi$ channel
- valuable to corroborate uncertainties of direct integration methods
- precise prediction for low-energy region, but valid up to 1 GeV (inelasticities must be taken into account):

$$a_{\mu}^{\mathrm{HVP},\pi\pi}|_{\leq 1\,\mathrm{GeV}} = 495.0(1.5)(2.1)\times 10^{-10}$$

• side-products: improved determination of $\pi\pi$ *P*-wave phase shift; pion charge radius